SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1

نویسندگان

  • Yuichiro Yoshioka
  • Takehiro Suzuki
  • Yo Matsuo
  • Makoto Nakakido
  • Giichiro Tsurita
  • Cristiano Simone
  • Toshiaki Watanabe
  • Naoshi Dohmae
  • Yusuke Nakamura
  • Ryuji Hamamoto
چکیده

AKT1 is a cytosolic serine/threonine kinase that is overexpressed in various types of cancer and has a central role in human tumorigenesis. Although it is known that AKT1 is post-translationally modified in various ways including phosphorylation and ubiquitination, methylation has not been reported so far. Here we demonstrate that the protein lysine methyltrasnferase SMYD3 methylates lysine 14 in the PH domain of AKT1 both in vitro and in vivo. Lysine 14-substituted AKT1 shows significantly lower levels of phosphorylation at threonine 308 than wild-type AKT1, and knockdown of SMYD3 as well as treatment with a SMYD3 inhibitor significantly attenuates this phosphorylation in cancer cells. Furthermore, substitution of lysine 14 diminishes the plasma membrane accumulation of AKT1, and cancer cells overexpressing lysine 14-substiuted AKT1 shows lower growth rate than those overexpressing wild-type AKT1. These results imply that SMYD3-mediated methylation of AKT1 at lysine 14 is essential for AKT1 activation and that SMYD3-mediated AKT1 methylation appears to be a good target for development of anti-cancer therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein lysine methyltransferase SMYD3 is involved in tumorigenesis through regulation of HER2 homodimerization

HER2 is a receptor tyrosine kinase, which is amplified and overexpressed in a subset of human cancers including breast and gastric cancers, and is indicated in its involvement in progression of cancer. Although its specific ligand(s) has not been detected, HER2 homodimerization, which is critical for its activation, is considered to be dependent on its expression levels. Here, we demonstrate a ...

متن کامل

Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2.

The SMYD (SET and MYND domain) family of lysine methyltransferases (KMTs) plays pivotal roles in various cellular processes, including gene expression regulation and DNA damage response. Initially identified as genuine histone methyltransferases, specific members of this family have recently been shown to methylate non-histone proteins such as p53, VEGFR, and the retinoblastoma tumor suppressor...

متن کامل

Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation

Smyd3 is a lysine methyltransferase implicated in chromatin and cancer regulation. Here we show that Smyd3 catalyzes histone H4 methylation at lysine 5 (H4K5me). This novel histone methylation mark is detected in diverse cell types and its formation is attenuated by depletion of Smyd3 protein. Further, Smyd3-driven cancer cell phenotypes require its enzymatic activity. Thus, Smyd3, via H4K5 met...

متن کامل

Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins.

The SET- and myeloid-Nervy-DEAF-1 (MYND)-domain containing (Smyd) lysine methyltransferases 1-3 share relatively high sequence similarity but exhibit divergence in the substrate specificity. Here we report the crystal structure of the full-length human Smyd2 in complex with S-adenosyl-L-homocysteine (AdoHcy). Although the Smyd1-3 enzymes are similar in the overall structure, detailed comparison...

متن کامل

Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents.

INTRODUCTION SET and MYND domain containing-3 (SMYD3) is a member of the lysine methyltransferase family of proteins, and plays an important role in the methylation of various histone and non-histone targets. Proper functioning of SMYD3 is very important for the target molecules to determine their different roles in chromatin remodeling, signal transduction and cell cycle control. Due to the ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016